New research published in Cancer Cell, Thomas Burris, Ph.D., chair of pharmacology and physiology at Saint Louis University, targets a broad principle that applies to almost every kind of cancer: its energy source.
The Saint Louis University study, which was conducted in animal models and in human tumor cells in the lab, showed that a drug developed by Burris and colleagues at Scripps Research Institute can stop cancer cells without causing damage to healthy cells or leading to other severe side effects.The Warburg Effect
Metabolism — the ability to use energy — is a feature of all living things. Cancer cells aggressively ramp up this process, allowing mutated cells to grow unchecked at the expense of surrounding tissue.
“Targeting cancer metabolism has become a hot area over the past few years, though the idea is not new,” Burris said.
Since the early 1900s, scientists have known that cancer cells prefer to use glucose as fuel even if they have plenty of other resources available. In fact, this is how doctors use PET (positron emission tomography) scan images to spot tumors. PET scans highlight the glucose that cancer cells have accumulated.
This preference for using glucose as fuel is called the Warburg effect, or glycolysis.
In his paper, Burris reports that the Warburg effect is the metabolic foundation of oncogenic (cancer gene) growth, tumor progression and metastasis as well as tumor resistance to treatment.
Cancer’s goal: to grow and divide
Cancer cells have one goal: to grow and divide as quickly as possible. And, while there are a number of possible molecular pathways a cell could use to find food, cancer cells have a set of preferred pathways.
“In fact, they are addicted to certain pathways,” Burris said. “They need tools to grow fast and that means they need to have all of the parts for new cells and they need new energy.”
“Cancer cells look for metabolic pathways to find the parts to grow and divide. If they don’t have the parts, they just die,” said Burris. “The Warburg effect ramps up energy use in the form of glucose to make chemicals required for rapid growth and cancer cells also ramp up another process, lipogenesis, that lets them make their own fats that they need to rapidly grow.”
If the Warburg effect and lipogenesis are key metabolic pathways that drive cancer progression, growth, survival, immune evasion, resistance to treatment and disease recurrence, then, Burris hypothesizes, targeting glycolysis and lipogenesis could offer a way to stop a broad range of cancers.